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1. Introduction.

In practice, long life items are subjected to larger Ehan normal
stresses in order to obtain failure data in a short amount of test time.

Such tests are called accelerated or overstress life tests, and the goal

~is to mgke inferences about the life distribution of the items at the
normal stress levels using failuré data Trom actcelerated tests:

The current approach to.thishproblem involves making assumptions
about the distribution of'failure times, and about the functional rela-
tionship between the parameters of the failure distribution and the

applied stress. Such a relationship is known as an acceleration function

or a time transformation function; examples of these are, the Power Law,

the Arrhenius Laﬁ, the Eyring Law, etc.. Another assﬁmption.ﬁommonly méde
states that at all stress ievels, the failure times are govérned by dis-
tributioné which are members of'the sgme parametric family, such as an
exponential or a Weibull. These assumptions, though appealing ffom a
statistical point of view, may be unreasonable in many practical situations./
of pdrticular concern is thé-last assumption. The different stress 1evels‘
may have different effects on the "failure mechanisms", and thus from an
engineering point of view, it may be more realistic to allow for different
forms of the failure distribution at fhe different stress levels.

In a recent paper, Proschan and Singpurwalla (1978) (hereafter
referred to as PS(1978)) have proposed a new approach for meking inferences
from acceierated life tests which requires neither distributional assump-

tions nor the specification of a time transformation function. Rather, their



approach is Bayesian, and is motivated by procedures actually used in
practice by reliability engineers. The Bayesian point of view enables
a user to incorporate some 2 priori information which is available in

accelerated life tesits.

In Section 2 we shall review this Pragmatic Bayesian approach to
accelerated life testing by'PS(1978), and present it in a manner which
mekes it easy btp understand. In Section 3 we shall‘demonstrafe the
usefulness of this approach bir applylng it to some real iife data on
accelerated life tests presented in Nelson (1970).

Our objective in writing this paper is to make this new appfoechv
to accelerated life testing accessible to the reliability engineer,

and to deiponstra.te its usefulness by applying it to a realistic situation.

2. A Pragmatic Bayesian Approach to Accelerated Life Testing.

We shall denote the k accelerated stresses (environzhents) by ..
E, sBysen. »E,» and the normal or use conditions stress (environment)

by 'Eu. Let
B> E,> DB >E , (2.1

where, E, >EJ. denotes the fact that E; is more severe than Ej‘
Let Fj be the failure distribution of the items tested under
enviro'nmen{: Ej > and let xj (x) ~denote the failure rate of .Fj at
time point x > 0.
Because of condition (2.1) it is logical from a physical point of

view to assume that for any x >0,



A G) 2 Ap() > een 20 (1) 22 (x) (2.2)

Using failure data obtained under El,EE,...;Ek, we would like to obtain
fj(x), an estimate of .Aj(x), Jj =1,2,...,k, such that for some
0<L<w andall x ¢ [0,L], '

}’:l(x)szt)’:z(x)sg ';' Szt?/:k(x) . (2._3)

st | : o
The notation X > 7Y denotes the fact that X is stochastically

larger than 7Y; that is
PIX >x] > PY>x] forall x.

In order to obtain estimators ij (x), 3 =1,2500.,k, which
satisfy (2.3), we shall use a.BayesianAapproadh. .Under this approach,
condition (2.2) is incorporated as a prior assumption. However, we
shall first define the "average failure rate" and discuss its Bayesian

estimation unconstrained by (2.2).

2.1. A Bayesian Estimation of the Average Failure Rate. -

Let Nj(t) be the number of items undergoing life test at time ¢,
under environment Ej’ Divide the time‘intervéi [O,i] into sub-intervals
of length h >0, vwhere h is chosen to make I a multiple of h. Thus,
the total number of sub-intervals is L/H..

For convenience, we shall introduce the following notation:

t; = the time point (i-1)h, i = 1,2,...,(L/h)

[t;,6,4) = the ™ time interval



=
il

the number of items exposed to the enviromment

Jsi
E. at time &,
3 i
xj,i = fche fgilure rgte of F, at by
X5 3 = the number of failures in the 1P time interval
3 .
under environment Ej
py 4 = the probability of failure of a unit in the 18
R .

time interval under environment E%.

Let
* . _ -pgzi .
Pii = iil 4
1 - P,
g=1 9o

then p§ 5 is the‘conditional probability that an item which has survived
P . . .
to time +t, will fail by time ti+h. We can also interpret p;f ; o8
: F

the average failure rate over the interval [ti’ti+h)°

If we assume that there are no withdrawals, reﬁovals, or censoring,

then

Ny,a0 = V3,1 7%5,5 2

i=212,...,(L/m) .
Our Bayesian analysis involves assigning prior distributions to
the average failure rates. Suppose that the p? 32 i= 1,2,...,(L/h),
. - J) ’
are a priori independent beta random varisbles with prior parameters

0 and ﬁj, so that their marginal densities are

N r'(a+BJ.) B.-1

=1 * J
f PRES = ‘% . l" s . ®
(05 1) = FT 2 (03 407 ( P5,5)
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Then, given the NJ.' i's and the xJ. i's, the posterior density of
2 >

(P§,1’P§,_2"°°’P;(L/h)) is [ef. PS(1978)1

QP AN, Qx, . =1 IR R, |
(L/n) re +5 (p* ) xa,l '(1~p* )BJ NJ.sl XJsl
. P(oc+x )r’ +N Xy g) 3 My,
i=1 51 7,1

o (2.4)
Jdasl :

2.2. A Bayesian Estimation of the Qrdered Avérag‘e Failure Rates.

In the Bayesian context, condition (2.2) leads us to the requirement

that for every fixed value of i,

% st . ~
P~1’1MP fOI' J =2,5J‘o.,k,-

J
- Thus, the prior distributionsof _'p%.e . and p¥ . will have to be
' . ' J=1,1 ST dat

chosen so as to ensure that
PlpY ., . >p] > Plp: . >p] for all P, 0<p<1l. (2.5)
J"‘l;l — - Jsi =~ — —

One way of achieving the above condition is to require [see PS(1978),

Appendix A] that

B. > B.

J < J""l fOI' j = 2,3,.0.,1{..;

To be assured that condition (2.5) is also satisfied with respect

to the posterior distributions of p 1.4 and p’f i it is sufficient
he ) 2 TT—

J
that for every fixed value of i,



xj:i S xj‘l:i
and | (2.6)
AN, Lex, 0 > B N, s =X, .
6J Jds: J,i — J-l Tj-1,i J"‘l:l
fOI‘ j = _2,3’ m'_n.,k.

The first part of condition (2.6) states that the mumber of
failures in the interval [ti,ti+h) under environment 'Ej must not
be greater than the number of failures in the same interval under
environemnt Ej 2 for all values of j. Furthermore, as is discussed
in PS(1978) a reasonable strategy is to have more items initially on
test under the more severe‘environment Ej-l than under the enviromment
ij, so that Nj,l < Nj-l,l for all j.

Since Nj,i = Nj,i-l’xj,i~l’ the second part of cond;tlon (2.6)

can be written as

P My, 100 SPPH 54y for 3=23,.. k.

Thus for every fixed value of i, the number.surviving at the start of
the (i+1)St interval plus the prior parameter Bj-1 for the enﬁironment
Ej-l must be not greater.than the corresponding sum for the environment
Ej' Since the number of failures in a particular interval is a function
of the severity of the environment and the number on teét, and since

Bj-l S.ﬁj) a reasonable‘strategy is to cyoose Bj-l < Bj’



Thus, the prior parameters 5j~l angd ﬂj are indicative of the

relative‘severity of the environmental conditions Ejnl and Ej‘

Because of condition (2.1):
Bl<B2<““'<ﬁk’

with the values of the Bj's being indicative of the seﬁerity of the Eh's

If the prior parameters B., the failure data xJ ;2 and the N 5,4
are such that condition (2.6) is satlsfied for every fixed value of i,
then the stochastic ordering condition (2.5) will be automatically
satisfied with respect to the posterior distribution of p l,...,p , (L/n)"
-If this is not the case, then we shall "pool" the adgacent v1olators

using the pooling procedure described below; the burpose is to eliminate

violations of (2.6).

" 2.3. The Pooling of Adjacent Violators.

The procedure for pooling adjacent viclators described here is

commonly used in isotonic regression; see Barlow, Bartholomew, Bremner

and Brunk (1972).
Consider the time interval [(i-1)h,ih); by condition (2.6) we

reguire

. . > otee D>y . ces
Xl)l 2X2’1 - "'“XJ"l,l EXJ, 2" >}£.k,l

and



ByHy 5%, 4 < By Mo,ip,1 S v SBy Wy 0 s 01
< 3L+, i, o X e <5 +N .
BJ 3,1775,1 = k,i” e

If a reversal occurs, that is, if either

X o « <X, .
Jg=l,1 Jsi

or if
N L ek L L > BN, L ex. L
ﬁJ-l J=1,1 T3-1,% BJ J.i 74,1 7

then we pool the violators and replace them as shown below.

Replace both X531 and xj,i by 2( ) and

J 1,1 J i

R . =X, . and AN, .=x. . b
P31 J-1,1 73-1,1 3 31751 Y
1 :
= +N, +N.

2(5 +B J=l,1 J:l J'lal J; )

We now test the new sequences to see if they are properly ordered.

If not, we replace the adjacent violators by their appropriate averages.

Thus, if

) <x

1 1
= + = =
o(x5.1,5%%5,1) 5051,1%%,1 341,17

d=l,i 7J,1i

then we replace each of the three by the average

1
S\A . ....+. 2] @
3(x3"1’1+x3:1 XJ+111)

The same procedure is used for the (B.+N. ,-x. . )'s.
d 7d,1 7,1



We follow the above procedure for all time intervals and continue
until all reversals are eJI_:'un:vf'.na’ced° Note that excéssive pooliﬁg will
occur if the relatlonshlp (2.2) does not actually hold, or if the
environmental condltlons are too similar to each other.

Assuming a squared error loss, before pooling, the Bayes estimator

of p* is [see IS(lQ?S)]

Joi
e O
* 3L
A Fiogr gl - (2.7)
o A

If we have done some pooling, then the x. .'s and the (B,+N. ,)'s
) dsl : T R e

are replaced by their appropriate pooled averages.

2.h. A Model for Extrapolation to. Use Condition Stress.

We shall use the ﬁf‘i's to estimate p* l,p 2,...,

u, (L/n)

the average failure rates under the use conditions env1ronment E .

| In the absence of any phy81aal or englneerlng knowledge about. the
relationship between the average failure rate and the corresponding stress,
we shall postulabte the following simple but reasonabie relationship asmong

the average faillure rates.

For each value of i, i = 1,2....,(L/h),

+ ses + YW

* x
pk E1 P- k-lpl,i > (2°8)

,.L "l’l

where W.sWosesessW gre unknown constants.
0’71 2 k-1 ,

The above relationship states that the average failure rate over

k
of the average failure rates over the same time interval under the

a particular time interval under the environment E_ is a weighted sum

enviromments Ek-l’Ek~2""’El'



Let w ,wl,..., o1’ be the least-squares estimators of
wo,wl,...,wk, these can be obtained routinely from equation ‘(2.8),
but with p* in place of p* throughout. Thus for i = 1,2,...,(L/n

we have

-

* a  ees + : , o,
Pa,i 1PL,1 . 1P2,:. -

as the estimators of the average failure rate under Eu’ As a conse-

quence, we also have

~ (L}/:h) N
= l had .

An estimator of i'-u(’c) ; the probability of an item surviving o

time t under Eu’ the use conditions stress, is

‘t/h‘
(t) = —f(lp)

) A

where the D~ . are given by (2.9).
u,1i

3. An Tllustrative Real Iife Exaimple.

In this section we shall apply the methodology discussed in the
previous section to some accelerated life test data given by Nelson

(1970). These data represent the times to breakdown of an insulating

)s

9}

fluid subjected to elevated voltage stress levels. TFor convenience, we

shall consider here only 4 accelerated voltage levels - 36, 34, 32, and

30 kilovolts (KV's). The failure times (in minutes) under the various

10



stress levels are gi&en in Table 1. Nelson's original data correspond
to T different'stress levels, but some of these contain very few failure
times and are therefore omitted. |

We. shall assume that the use conditions stressvis>28 KV,'and apply
our approach to estimate the failure distribuﬁion of the breakdown times
at this stress. | |

'Following the notation of Section 2, we shall chooée L to be 100
minutes, and h to be lA.minuté, making the total number of time
intervals equal:to 100. For our prior parameters we shall, following

the discussion in Sections 2.1 and 2.2, choose O =1, wiﬁh Blf=l’ B. =2,

2
§3==7, and 5h:=12' The above choice of our prior parameters B

X1’ ﬁe’

65, and 5& is motivated by an inspection of the failure times in

Table 1. Observé that even though the stress levels decrease successivély
by only 2 KV's, the corresponding change in the failure times from one
stress level to the next lower appears to be more drastic. This nay bé
due to a change in the failure medhénisﬁ.as we go to the lower stresseéo
Note that N, =15, N, = 19, N3 = 15, and N, =11. |

After computing the =x. .'s and the (Bj+N, )'s Tor

S
Jsd doi J,rl
J =1,2,3,4, 1 =1,2,...,100, and after pooling the adjacent violators
as discussed in Section 2.3, we obbtain the Bayes estimators §§ i using
’ 2
Equation (2.7). These values are given in Table 2, wherein, for convenience,
we have limited curselves to time intervals of width 5. Observe that
the pooling scheme ensures that for each time interval the §§ i's
N . . 2

decrease with increasing stress level. For example, §f§20 = 3333,

A* - I\* - A* -
3 20 . 1250, p3,2o 071k, and ph’go .Ol5h,

11



. Qur next step is to use the entries in Table 2 to obtain estimates
of the w's given in Equation (2.8). If we designate the 30 KV level
as the level k(=4) of Equation (2.8), and the 32, 3&,'ana’the 36 KV
levels as k-1, k-2, and k-3, respectively, then,'. the least squares
esﬁima.tion of the w's gives us for i = 1,2,..,,109,

7

~x ) "-% A_)'(_ . A% .
D, 3 = -2560 + .18861pJ . + .13538p , + .0985Tp, ; -

. : . _ , .
We shall now use the following equation to estimate p:: 52

. . o4
i=1,2,...,100, wvhere u(=5) denotes the use condition stress

"level of 28 KV:
o¥ _ .2360 + .1886p% . + .13538p% . + .0985Tp . -
5,1 ‘ Rt 9% 1 ' 5,51 ; 2,1
An estimate of the survival probability at use conditions voltage
of 28 KV is_ given by

£ R
Tr (l"P;’i) .

=l

F,(+)

The values of Fﬁ(t), t

5,10,...,100, are given in Table 3,

and. plotted in Figure 1.



Table lf

Times to_Breakdown of an Insulating Fluid o

.35

-59

.96

<99
1.69
1.97
2.07
2.58
2.71
2.9
3.67
3.99
5.35
3.77
. 25.50

(in Minutes) Under Various Values of the

Stress (in Kilovolts).

32KV

.40
-69
.79
2,75
3.91
9.88
13.95
15.93
27.80
53.24
82.85
89.29
100.58
215.10

13

30KV

LT Th
17.05
20.46

21.02
22,66
43,40
%7.30
139.07
k.12
175.88

194%.90



Table 2. Estimated Values p? 5 of the Average
Fallure Rates-Uhdsr Various.values of
the-Stress (in Kilovolts).

Stress

Time Interval 36KV 34KV | 32KV 30KV
5 3846 .172k .0588 .0b17
10 <3077 .1k29 L0816 .0l35
15 +3333 © L.1250 . 0667 | .0435
20 3333 1250 - -071h - 045k
25 3333 . .1250 071 L0526
30 +5000 .1250 L0769 0526
35 5000  .2000 - L0769 .0526
%0 5000 . +2500 L0769 . .0526
15 L5000 .2500 0769 0556
50 . 5000 2500 0769 - .0588
55 .5000 - .2500 0833  ,0588
60 - 5000 .2500 .0833 .0588
65 .5000 .2500 - .0833 0588
70 4 © 45000 - 2500 .0833 - - .0588
75 .5000 .3333 0833 - ,0588
8 « 5000 «3333 0833 .0588
8 .5000 - .3333 - .0909 ~.0588
0 571 1000 - .1290 ,0588
95 . .5000 3333 .1000 .0588

100 .5000 .3333 .1000 .0588

14
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Table 3. Values of F(t) at the 28 KV level.

& £(t)
5 .803
10 .650
15 : | 525
20 . .oy
25 o W3h5
30 ' Co 277
35 - .222
4o <177
5 JA41
50 | 112
55 ' .09
60 = 071
65 . 057
70 .0L5
75 | 036
80 | L0208
85 . .022
90 .07
95 L .01k

100 ' .011
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